

Türkiye's Recent Earthquakes, and What They Can Teach Us About Preparation and Response Here

Eric Sandvol¹, Ekrem Zor², Mehmet Ergin², Oguzhan Yalvac¹, Mustafa Cengiz Tapirdamaz², Phuc Mach³, Chang Ding³, Adil Tarancioglu², Fatih Sevim², and Zhigang Peng³

¹University of Missouri, Columbia, Missouri, USA ²TUBITAK, The Scientific and Technological Research Council of Turkiye, Marmara Research Center, Earth and Marine Sciences Institute, Turkiye

³Georigia Institute of Technology, Atlanta GA USA

Outline

- I. Introduction to the Kahramanmaras Earthquakes
- II. Some Comparisons of the New Madrid and Kahramanmaras Earthquakes
 - A. Earthquake Sequences and stress triggering
 - B. Ground motions in the Amik Basin and Mississippi Embayment
- III. 2023 Rapid Aftershock Deployment

Earthquake Locations:

Differences between the NMSZ and EAFZ

What is an Earthquake? Earthquakes occur when the earth's crust "breaks" along a fault

This process generates waves that travel through the earth called seismic waves

February 6th, 2023 Kahramanmaras Earthquake Sequence

Xu et al., 2023

Historical Seismicity Along the EAFZ

Tuttle et al., 2002 SSB

Forecasting Earthquakes: The Earthquake Cycle

Calculated stress imparted by M 7.8 and M 7.5 shocks

An analog for these events and a window into the future?

Predicted change of Coulomb stress change 200 year after the 1811-1812 events

GPS Vectors (Reilinger et al., 2006)

NMSZ Strain Accumulation?

Ground Motions

New Madrid Ground Motions

Magnitude 7.7 Earthquake Simulation in the New Madrid Seismic Zone. Time since earthquake started t=0.40 seconds

EAFZ Seismic Network

(Adapted from SmartSolo website)

Seismic Velocity: Rate at which seismic wave propagates through a given material. The seismic velocity is proportional to the *rigidity* of a material. The harder or more rigid a rock is, the faster a seismic wave will travel through it: $Vs = [\mu / \rho]^{1/2}$; $Vp = [(\mu + 4/3\kappa)/\rho]^{1/2}$

Examples:

Water:

Clay:

Soil:

Alluvium:

Limestone (unweathered): Granite (unweathered): Sandstone (weathered):

1400-1600 m/s 200-2500 m/s 300-600 m/s 1000-3000 m/s 2000-5000 m/s 5000-6000 m/s 2500-4500 m/s

EAF Pazarcık S.

Dictanco in km

DSF Sakçagöz-Narlı S.

Testing shallow versus deep low-velocity fault zone structures with ultralong dense array and two parallel rupture zones

Different fault zone trapped waves are expected for these models from on and offfault seismicity.

Ben-Zion et al. (GJI, 2003) for the 1999 Izmit/Duzce earthquake sequence

Things we can learn from the Turkiye earthquakes:

- We can expect a sequence of earthquakes rather than just one event (similar to what happened in 1811-812)
- Strongest ground motions and liquefaction will occur primarily in the Mississippi embayment (i.e. the effect of shallow, young, water saturated sediments)
- Recovery time will likely be years rather than days

QUESTIONS?

This deployment would not have been possible without support from the United States National Science Foundation's Geophysics Program (RAPID EAR-2322461). Thanks to SmartSolo Inc. for providing 150 nodes.

Ren et al., Science, 2024

Ground Motions Along the August Profile:

$$A_{j}^{i}(\omega) = S_{j}(\omega,\theta)I^{i}(\omega)E_{j}(\omega)G_{j}^{i}(\Delta)\exp\left[-\frac{\pi f\Delta_{j}^{i}}{\nu Q(f)}\right]$$

Proposed Array Objectives

- Create comprehensive EQ catalog with detection thresholds near zero
- Use the catalog to image detailed 3D structural images of the active faults zones with an emphasis on bends, fault intersections, and step-overs
- Construct frequency dependent model of site amplification across EQ zone
- Detailed images of upper crustal seismic anisotropy

Spatial-Temporal Variations in Seismicity

Earthquake Epicenters taken from the combined TUBITAK and AFAD catalog.

The EAFZ aftershock Networks had nodes deployed between Julian day 120 and 237

2023 Julian Days

Array Deployed in April 2023

Planned Analysis

Preliminary EAFZ Nodal Earthquake Locations from May 1st- June 12th EQTransformer (Mousavi et al., 2020)

Latest Aftershock map from our collaborators at TUBITAK:

Interferogram

Broadband vs Nodal

